ethereum.gray_glacier.vm.precompiled_contracts.modexpethereum.paris.vm.precompiled_contracts.modexp

Ethereum Virtual Machine (EVM) MODEXP PRECOMPILED CONTRACT ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. contents:: Table of Contents :backlinks: none :local:

Introduction

Implementation of the MODEXP precompiled contract.

GQUADDIVISOR

21
GQUADDIVISOR = Uint(3)

modexp

Calculates (base**exp) % modulus for arbitrary sized base, exp and. modulus. The return value is the same length as the modulus.

def modexp(evm: Evm) -> None:
25
    """
26
    Calculates `(base**exp) % modulus` for arbitrary sized `base`, `exp` and.
27
    `modulus`. The return value is the same length as the modulus.
28
    """
29
    data = evm.message.data
30
31
    # GAS
32
    base_length = U256.from_be_bytes(buffer_read(data, U256(0), U256(32)))
33
    exp_length = U256.from_be_bytes(buffer_read(data, U256(32), U256(32)))
34
    modulus_length = U256.from_be_bytes(buffer_read(data, U256(64), U256(32)))
35
36
    exp_start = U256(96) + base_length
37
38
    exp_head = Uint.from_be_bytes(
39
        buffer_read(data, exp_start, min(U256(32), exp_length))
40
    )
41
42
    charge_gas(
43
        evm,
44
        gas_cost(base_length, modulus_length, exp_length, exp_head),
45
    )
46
47
    # OPERATION
48
    if base_length == 0 and modulus_length == 0:
49
        evm.output = Bytes()
50
        return
51
52
    base = Uint.from_be_bytes(buffer_read(data, U256(96), base_length))
53
    exp = Uint.from_be_bytes(buffer_read(data, exp_start, exp_length))
54
55
    modulus_start = exp_start + exp_length
56
    modulus = Uint.from_be_bytes(
57
        buffer_read(data, modulus_start, modulus_length)
58
    )
59
60
    if modulus == 0:
61
        evm.output = Bytes(b"\x00") * modulus_length
62
    else:
63
        evm.output = pow(base, exp, modulus).to_bytes(
64
            Uint(modulus_length), "big"
65
        )

complexity

Estimate the complexity of performing a modular exponentiation.

Parameters

base_length : Length of the array representing the base integer.

modulus_length : Length of the array representing the modulus integer.

Returns

complexity : Uint Complexity of performing the operation.

def complexity(base_length: U256, ​​modulus_length: U256) -> Uint:
69
    """
70
    Estimate the complexity of performing a modular exponentiation.
71
72
    Parameters
73
    ----------
74
75
    base_length :
76
        Length of the array representing the base integer.
77
78
    modulus_length :
79
        Length of the array representing the modulus integer.
80
81
    Returns
82
    -------
83
84
    complexity : `Uint`
85
        Complexity of performing the operation.
86
    """
87
    max_length = max(Uint(base_length), Uint(modulus_length))
88
    words = (max_length + Uint(7)) // Uint(8)
89
    return words ** Uint(2)

iterations

Calculate the number of iterations required to perform a modular exponentiation.

Parameters

exponent_length : Length of the array representing the exponent integer.

exponent_head : First 32 bytes of the exponent (with leading zero padding if it is shorter than 32 bytes), as an unsigned integer.

Returns

iterations : Uint Number of iterations.

def iterations(exponent_length: U256, ​​exponent_head: Uint) -> Uint:
93
    """
94
    Calculate the number of iterations required to perform a modular
95
    exponentiation.
96
97
    Parameters
98
    ----------
99
100
    exponent_length :
101
        Length of the array representing the exponent integer.
102
103
    exponent_head :
104
        First 32 bytes of the exponent (with leading zero padding if it is
105
        shorter than 32 bytes), as an unsigned integer.
106
107
    Returns
108
    -------
109
110
    iterations : `Uint`
111
        Number of iterations.
112
    """
113
    if exponent_length <= U256(32) and exponent_head == U256(0):
114
        count = Uint(0)
115
    elif exponent_length <= U256(32):
116
        bit_length = Uint(exponent_head.bit_length())
117
118
        if bit_length > Uint(0):
119
            bit_length -= Uint(1)
120
121
        count = bit_length
122
    else:
123
        length_part = Uint(8) * (Uint(exponent_length) - Uint(32))
124
        bits_part = Uint(exponent_head.bit_length())
125
126
        if bits_part > Uint(0):
127
            bits_part -= Uint(1)
128
129
        count = length_part + bits_part
130
131
    return max(count, Uint(1))

gas_cost

Calculate the gas cost of performing a modular exponentiation.

Parameters

base_length : Length of the array representing the base integer.

modulus_length : Length of the array representing the modulus integer.

exponent_length : Length of the array representing the exponent integer.

exponent_head : First 32 bytes of the exponent (with leading zero padding if it is shorter than 32 bytes), as an unsigned integer.

Returns

gas_cost : Uint Gas required for performing the operation.

def gas_cost(base_length: U256, ​​modulus_length: U256, ​​exponent_length: U256, ​​exponent_head: Uint) -> Uint:
140
    """
141
    Calculate the gas cost of performing a modular exponentiation.
142
143
    Parameters
144
    ----------
145
146
    base_length :
147
        Length of the array representing the base integer.
148
149
    modulus_length :
150
        Length of the array representing the modulus integer.
151
152
    exponent_length :
153
        Length of the array representing the exponent integer.
154
155
    exponent_head :
156
        First 32 bytes of the exponent (with leading zero padding if it is
157
        shorter than 32 bytes), as an unsigned integer.
158
159
    Returns
160
    -------
161
162
    gas_cost : `Uint`
163
        Gas required for performing the operation.
164
    """
165
    multiplication_complexity = complexity(base_length, modulus_length)
166
    iteration_count = iterations(exponent_length, exponent_head)
167
    cost = multiplication_complexity * iteration_count
168
    cost //= GQUADDIVISOR
169
    return max(Uint(200), cost)