ethereum.arrow_glacier.transactionsethereum.gray_glacier.transactions

Transactions are atomic units of work created externally to Ethereum and submitted to be executed. If Ethereum is viewed as a state machine, transactions are the events that move between states.

TX_BASE_COST

Base cost of a transaction in gas units. This is the minimum amount of gas required to execute a transaction.

21
TX_BASE_COST = Uint(21000)

TX_DATA_COST_PER_NON_ZERO

Gas cost per non-zero byte in the transaction data.

27
TX_DATA_COST_PER_NON_ZERO = Uint(16)

TX_DATA_COST_PER_ZERO

Gas cost per zero byte in the transaction data.

32
TX_DATA_COST_PER_ZERO = Uint(4)

TX_CREATE_COST

Additional gas cost for creating a new contract.

37
TX_CREATE_COST = Uint(32000)

TX_ACCESS_LIST_ADDRESS_COST

Gas cost for including an address in the access list of a transaction.

42
TX_ACCESS_LIST_ADDRESS_COST = Uint(2400)

TX_ACCESS_LIST_STORAGE_KEY_COST

Gas cost for including a storage key in the access list of a transaction.

47
TX_ACCESS_LIST_STORAGE_KEY_COST = Uint(1900)

LegacyTransaction

Atomic operation performed on the block chain. This represents the original transaction format used before EIP-1559, and EIP-2930.

53
@slotted_freezable
54
@dataclass
class LegacyTransaction:

nonce

64
    nonce: U256

gas_price

69
    gas_price: Uint

gas

74
    gas: Uint

to

79
    to: Union[Bytes0, Address]

value

85
    value: U256

data

90
    data: Bytes

v

96
    v: U256

r

101
    r: U256

s

106
    s: U256

Access

A mapping from account address to storage slots that are pre-warmed as part of a transaction.

112
@slotted_freezable
113
@dataclass
class Access:

account

120
    account: Address

slots

125
    slots: Tuple[Bytes32, ...]

AccessListTransaction

The transaction type added in EIP-2930 to support access lists.

This transaction type extends the legacy transaction with an access list and chain ID. The access list specifies which addresses and storage slots the transaction will access.

131
@slotted_freezable
132
@dataclass
class AccessListTransaction:

chain_id

144
    chain_id: U64

nonce

149
    nonce: U256

gas_price

154
    gas_price: Uint

gas

159
    gas: Uint

to

164
    to: Union[Bytes0, Address]

value

170
    value: U256

data

175
    data: Bytes

access_list

181
    access_list: Tuple[Access, ...]

y_parity

187
    y_parity: U256

r

192
    r: U256

s

197
    s: U256

FeeMarketTransaction

The transaction type added in EIP-1559.

This transaction type introduces a new fee market mechanism with two gas price parameters: max_priority_fee_per_gas and max_fee_per_gas.

203
@slotted_freezable
204
@dataclass
class FeeMarketTransaction:

chain_id

215
    chain_id: U64

nonce

220
    nonce: U256

max_priority_fee_per_gas

225
    max_priority_fee_per_gas: Uint

max_fee_per_gas

230
    max_fee_per_gas: Uint

gas

236
    gas: Uint

to

241
    to: Union[Bytes0, Address]

value

247
    value: U256

data

252
    data: Bytes

access_list

258
    access_list: Tuple[Access, ...]

y_parity

264
    y_parity: U256

r

269
    r: U256

s

274
    s: U256

Transaction

Union type representing any valid transaction type.

280
Transaction = Union[
281
    LegacyTransaction, AccessListTransaction, FeeMarketTransaction
282
]

encode_transaction

Encode a transaction into its RLP or typed transaction format. Needed because non-legacy transactions aren't RLP.

Legacy transactions are returned as-is, while other transaction types are prefixed with their type identifier and RLP encoded.

def encode_transaction(tx: Transaction) -> Union[LegacyTransaction, Bytes]:
289
    """
290
    Encode a transaction into its RLP or typed transaction format.
291
    Needed because non-legacy transactions aren't RLP.
292
293
    Legacy transactions are returned as-is, while other transaction types
294
    are prefixed with their type identifier and RLP encoded.
295
    """
296
    if isinstance(tx, LegacyTransaction):
297
        return tx
298
    elif isinstance(tx, AccessListTransaction):
299
        return b"\x01" + rlp.encode(tx)
300
    elif isinstance(tx, FeeMarketTransaction):
301
        return b"\x02" + rlp.encode(tx)
302
    else:
303
        raise Exception(f"Unable to encode transaction of type {type(tx)}")

decode_transaction

Decode a transaction from its RLP or typed transaction format. Needed because non-legacy transactions aren't RLP.

Legacy transactions are returned as-is, while other transaction types are decoded based on their type identifier prefix.

def decode_transaction(tx: Union[LegacyTransaction, Bytes]) -> Transaction:
307
    """
308
    Decode a transaction from its RLP or typed transaction format.
309
    Needed because non-legacy transactions aren't RLP.
310
311
    Legacy transactions are returned as-is, while other transaction types
312
    are decoded based on their type identifier prefix.
313
    """
314
    if isinstance(tx, Bytes):
315
        if tx[0] == 1:
316
            return rlp.decode_to(AccessListTransaction, tx[1:])
317
        elif tx[0] == 2:
318
            return rlp.decode_to(FeeMarketTransaction, tx[1:])
319
        else:
320
            raise TransactionTypeError(tx[0])
321
    else:
322
        return tx

validate_transaction

Verifies a transaction.

The gas in a transaction gets used to pay for the intrinsic cost of operations, therefore if there is insufficient gas then it would not be possible to execute a transaction and it will be declared invalid.

Additionally, the nonce of a transaction must not equal or exceed the limit defined in EIP-2681. In practice, defining the limit as 2**64-1 has no impact because sending 2**64-1 transactions is improbable. It's not strictly impossible though, 2**64-1 transactions is the entire capacity of the Ethereum blockchain at 2022 gas limits for a little over 22 years.

This function takes a transaction as a parameter and returns the intrinsic gas cost of the transaction after validation. It throws an InvalidTransaction exception if the transaction is invalid.

def validate_transaction(tx: Transaction) -> Uint:
326
    """
327
    Verifies a transaction.
328
329
    The gas in a transaction gets used to pay for the intrinsic cost of
330
    operations, therefore if there is insufficient gas then it would not
331
    be possible to execute a transaction and it will be declared invalid.
332
333
    Additionally, the nonce of a transaction must not equal or exceed the
334
    limit defined in [EIP-2681].
335
    In practice, defining the limit as ``2**64-1`` has no impact because
336
    sending ``2**64-1`` transactions is improbable. It's not strictly
337
    impossible though, ``2**64-1`` transactions is the entire capacity of the
338
    Ethereum blockchain at 2022 gas limits for a little over 22 years.
339
340
    This function takes a transaction as a parameter and returns the intrinsic
341
    gas cost of the transaction after validation. It throws an
342
    `InvalidTransaction` exception if the transaction is invalid.
343
344
    [EIP-2681]: https://eips.ethereum.org/EIPS/eip-2681
345
    """
346
    intrinsic_gas = calculate_intrinsic_cost(tx)
347
    if intrinsic_gas > tx.gas:
348
        raise InvalidTransaction("Insufficient gas")
349
    if U256(tx.nonce) >= U256(U64.MAX_VALUE):
350
        raise InvalidTransaction("Nonce too high")
351
    return intrinsic_gas

calculate_intrinsic_cost

Calculates the gas that is charged before execution is started.

The intrinsic cost of the transaction is charged before execution has begun. Functions/operations in the EVM cost money to execute so this intrinsic cost is for the operations that need to be paid for as part of the transaction. Data transfer, for example, is part of this intrinsic cost. It costs ether to send data over the wire and that ether is accounted for in the intrinsic cost calculated in this function. This intrinsic cost must be calculated and paid for before execution in order for all operations to be implemented.

The intrinsic cost includes:

  1. Base cost (TX_BASE_COST)

  2. Cost for data (zero and non-zero bytes)

  3. Cost for contract creation (if applicable)

  4. Cost for access list entries (if applicable)

This function takes a transaction as a parameter and returns the intrinsic gas cost of the transaction.

def calculate_intrinsic_cost(tx: Transaction) -> Uint:
355
    """
356
    Calculates the gas that is charged before execution is started.
357
358
    The intrinsic cost of the transaction is charged before execution has
359
    begun. Functions/operations in the EVM cost money to execute so this
360
    intrinsic cost is for the operations that need to be paid for as part of
361
    the transaction. Data transfer, for example, is part of this intrinsic
362
    cost. It costs ether to send data over the wire and that ether is
363
    accounted for in the intrinsic cost calculated in this function. This
364
    intrinsic cost must be calculated and paid for before execution in order
365
    for all operations to be implemented.
366
367
    The intrinsic cost includes:
368
    1. Base cost (`TX_BASE_COST`)
369
    2. Cost for data (zero and non-zero bytes)
370
    3. Cost for contract creation (if applicable)
371
    4. Cost for access list entries (if applicable)
372
373
    This function takes a transaction as a parameter and returns the intrinsic
374
    gas cost of the transaction.
375
    """
376
    data_cost = Uint(0)
377
378
    for byte in tx.data:
379
        if byte == 0:
380
            data_cost += TX_DATA_COST_PER_ZERO
381
        else:
382
            data_cost += TX_DATA_COST_PER_NON_ZERO
383
384
    if tx.to == Bytes0(b""):
385
        create_cost = TX_CREATE_COST
386
    else:
387
        create_cost = Uint(0)
388
389
    access_list_cost = Uint(0)
390
    if isinstance(tx, (AccessListTransaction, FeeMarketTransaction)):
391
        for access in tx.access_list:
392
            access_list_cost += TX_ACCESS_LIST_ADDRESS_COST
393
            access_list_cost += (
394
                ulen(access.slots) * TX_ACCESS_LIST_STORAGE_KEY_COST
395
            )
396
397
    return TX_BASE_COST + data_cost + create_cost + access_list_cost

recover_sender

Extracts the sender address from a transaction.

The v, r, and s values are the three parts that make up the signature of a transaction. In order to recover the sender of a transaction the two components needed are the signature (v, r, and s) and the signing hash of the transaction. The sender's public key can be obtained with these two values and therefore the sender address can be retrieved.

This function takes chain_id and a transaction as parameters and returns the address of the sender of the transaction. It raises an InvalidSignatureError if the signature values (r, s, v) are invalid.

def recover_sender(chain_id: U64, ​​tx: Transaction) -> Address:
401
    """
402
    Extracts the sender address from a transaction.
403
404
    The v, r, and s values are the three parts that make up the signature
405
    of a transaction. In order to recover the sender of a transaction the two
406
    components needed are the signature (``v``, ``r``, and ``s``) and the
407
    signing hash of the transaction. The sender's public key can be obtained
408
    with these two values and therefore the sender address can be retrieved.
409
410
    This function takes chain_id and a transaction as parameters and returns
411
    the address of the sender of the transaction. It raises an
412
    `InvalidSignatureError` if the signature values (r, s, v) are invalid.
413
    """
414
    r, s = tx.r, tx.s
415
    if U256(0) >= r or r >= SECP256K1N:
416
        raise InvalidSignatureError("bad r")
417
    if U256(0) >= s or s > SECP256K1N // U256(2):
418
        raise InvalidSignatureError("bad s")
419
420
    if isinstance(tx, LegacyTransaction):
421
        v = tx.v
422
        if v == 27 or v == 28:
423
            public_key = secp256k1_recover(
424
                r, s, v - U256(27), signing_hash_pre155(tx)
425
            )
426
        else:
427
            chain_id_x2 = U256(chain_id) * U256(2)
428
            if v != U256(35) + chain_id_x2 and v != U256(36) + chain_id_x2:
429
                raise InvalidSignatureError("bad v")
430
            public_key = secp256k1_recover(
431
                r,
432
                s,
433
                v - U256(35) - chain_id_x2,
434
                signing_hash_155(tx, chain_id),
435
            )
436
    elif isinstance(tx, AccessListTransaction):
437
        if tx.y_parity not in (U256(0), U256(1)):
438
            raise InvalidSignatureError("bad y_parity")
439
        public_key = secp256k1_recover(
440
            r, s, tx.y_parity, signing_hash_2930(tx)
441
        )
442
    elif isinstance(tx, FeeMarketTransaction):
443
        if tx.y_parity not in (U256(0), U256(1)):
444
            raise InvalidSignatureError("bad y_parity")
445
        public_key = secp256k1_recover(
446
            r, s, tx.y_parity, signing_hash_1559(tx)
447
        )
448
449
    return Address(keccak256(public_key)[12:32])

signing_hash_pre155

Compute the hash of a transaction used in a legacy (pre EIP-155) signature.

This function takes a legacy transaction as a parameter and returns the signing hash of the transaction.

def signing_hash_pre155(tx: LegacyTransaction) -> Hash32:
453
    """
454
    Compute the hash of a transaction used in a legacy (pre [EIP-155])
455
    signature.
456
457
    This function takes a legacy transaction as a parameter and returns the
458
    signing hash of the transaction.
459
460
    [EIP-155]: https://eips.ethereum.org/EIPS/eip-155
461
    """
462
    return keccak256(
463
        rlp.encode(
464
            (
465
                tx.nonce,
466
                tx.gas_price,
467
                tx.gas,
468
                tx.to,
469
                tx.value,
470
                tx.data,
471
            )
472
        )
473
    )

signing_hash_155

Compute the hash of a transaction used in a EIP-155 signature.

This function takes a legacy transaction and a chain ID as parameters and returns the hash of the transaction used in an EIP-155 signature.

def signing_hash_155(tx: LegacyTransaction, ​​chain_id: U64) -> Hash32:
477
    """
478
    Compute the hash of a transaction used in a [EIP-155] signature.
479
480
    This function takes a legacy transaction and a chain ID as parameters
481
    and returns the hash of the transaction used in an [EIP-155] signature.
482
483
    [EIP-155]: https://eips.ethereum.org/EIPS/eip-155
484
    """
485
    return keccak256(
486
        rlp.encode(
487
            (
488
                tx.nonce,
489
                tx.gas_price,
490
                tx.gas,
491
                tx.to,
492
                tx.value,
493
                tx.data,
494
                chain_id,
495
                Uint(0),
496
                Uint(0),
497
            )
498
        )
499
    )

signing_hash_2930

Compute the hash of a transaction used in a EIP-2930 signature.

This function takes an access list transaction as a parameter and returns the hash of the transaction used in an EIP-2930 signature.

def signing_hash_2930(tx: AccessListTransaction) -> Hash32:
503
    """
504
    Compute the hash of a transaction used in a [EIP-2930] signature.
505
506
    This function takes an access list transaction as a parameter
507
    and returns the hash of the transaction used in an [EIP-2930] signature.
508
509
    [EIP-2930]: https://eips.ethereum.org/EIPS/eip-2930
510
    """
511
    return keccak256(
512
        b"\x01"
513
        + rlp.encode(
514
            (
515
                tx.chain_id,
516
                tx.nonce,
517
                tx.gas_price,
518
                tx.gas,
519
                tx.to,
520
                tx.value,
521
                tx.data,
522
                tx.access_list,
523
            )
524
        )
525
    )

signing_hash_1559

Compute the hash of a transaction used in an EIP-1559 signature.

This function takes a fee market transaction as a parameter and returns the hash of the transaction used in an EIP-1559 signature.

def signing_hash_1559(tx: FeeMarketTransaction) -> Hash32:
529
    """
530
    Compute the hash of a transaction used in an [EIP-1559] signature.
531
532
    This function takes a fee market transaction as a parameter
533
    and returns the hash of the transaction used in an [EIP-1559] signature.
534
535
    [EIP-1559]: https://eips.ethereum.org/EIPS/eip-1559
536
    """
537
    return keccak256(
538
        b"\x02"
539
        + rlp.encode(
540
            (
541
                tx.chain_id,
542
                tx.nonce,
543
                tx.max_priority_fee_per_gas,
544
                tx.max_fee_per_gas,
545
                tx.gas,
546
                tx.to,
547
                tx.value,
548
                tx.data,
549
                tx.access_list,
550
            )
551
        )
552
    )

get_transaction_hash

Compute the hash of a transaction.

This function takes a transaction as a parameter and returns the keccak256 hash of the transaction. It can handle both legacy transactions and typed transactions (AccessListTransaction, FeeMarketTransaction, etc.).

def get_transaction_hash(tx: Union[Bytes, LegacyTransaction]) -> Hash32:
556
    """
557
    Compute the hash of a transaction.
558
559
    This function takes a transaction as a parameter and returns the
560
    keccak256 hash of the transaction. It can handle both legacy transactions
561
    and typed transactions (`AccessListTransaction`, `FeeMarketTransaction`,
562
    etc.).
563
    """
564
    assert isinstance(tx, (LegacyTransaction, Bytes))
565
    if isinstance(tx, LegacyTransaction):
566
        return keccak256(rlp.encode(tx))
567
    else:
568
        return keccak256(tx)