Skip to content

Sharding -- Polynomial Commitments

Notice: This document is a work-in-progress for researchers and implementers.

Table of contents

Introduction

This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the sharding specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations, and hints what the best known algorithms for these implementations are included below.

Constants

BLS Field

Name Value Notes
BLS_MODULUS 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001 (curve order of BLS12_381)
PRIMITIVE_ROOT_OF_UNITY 7 Primitive root of unity of the BLS12_381 (inner) BLS_MODULUS

KZG Trusted setup

Name Value
G1_SETUP Type List[G1]. The G1-side trusted setup [G, G*s, G*s**2....]; note that the first point is the generator.
G2_SETUP Type List[G2]. The G2-side trusted setup [G, G*s, G*s**2....]

Custom types

We define the following Python custom types for type hinting and readability:

Name SSZ equivalent Description
KZGCommitment Bytes48 A G1 curve point
BLSFieldElement uint256 A number x in the range 0 <= x < BLS_MODULUS
BLSPolynomialByCoefficients List[BLSFieldElement] A polynomial over the BLS field, given in coefficient form
BLSPolynomialByEvaluations List[BLSFieldElement] A polynomial over the BLS field, given in evaluation form

Helper functions

next_power_of_two

1
2
3
def next_power_of_two(x: int) -> int:
    assert x > 0
    return 2 ** ((x - 1).bit_length())

reverse_bit_order

1
2
3
4
5
6
7
def reverse_bit_order(n: int, order: int) -> int:
    """
    Reverse the bit order of an integer n
    """
    assert is_power_of_two(order)
    # Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order
    return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2)

list_to_reverse_bit_order

1
2
3
4
5
def list_to_reverse_bit_order(l: List[int]) -> List[int]:
    """
    Convert a list between normal and reverse bit order. The permutation is an involution (inverts itself)..
    """
    return [l[reverse_bit_order(i, len(l))] for i in range(len(l))]

Field operations

Generic field operations

bls_modular_inverse

def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
    """
    Compute the modular inverse of x, i.e. y such that x * y % BLS_MODULUS == 1 and return 1 for x == 0
    """
    lm, hm = 1, 0
    low, high = x % BLS_MODULUS, BLS_MODULUS
    while low > 1:
        r = high // low
        nm, new = hm - lm * r, high - low * r
        lm, low, hm, high = nm, new, lm, low
    return lm % BLS_MODULUS

roots_of_unity

def roots_of_unity(order: uint64) -> List[BLSFieldElement]:
    """
    Compute a list of roots of unity for a given order.
    The order must divide the BLS multiplicative group order, i.e. BLS_MODULUS - 1
    """
    assert (BLS_MODULUS - 1) % order == 0
    roots = []
    root_of_unity = pow(PRIMITIVE_ROOT_OF_UNITY, (BLS_MODULUS - 1) // order, BLS_MODULUS)

    current_root_of_unity = 1
    for i in range(SAMPLES_PER_BLOB * FIELD_ELEMENTS_PER_SAMPLE):
        roots.append(current_root_of_unity)
        current_root_of_unity = current_root_of_unity * root_of_unity % BLS_MODULUS
    return roots

Field helper functions

compute_powers

1
2
3
4
5
6
7
def compute_powers(x: BLSFieldElement, n: uint64) -> List[BLSFieldElement]:
    current_power = 1
    powers = []
    for _ in range(n):
        powers.append(BLSFieldElement(current_power))
        current_power = current_power * int(x) % BLS_MODULUS
    return powers

low_degree_check

def low_degree_check(commitments: List[KZGCommitment]):
    """
    Checks that the commitments are on a low-degree polynomial.
    If there are 2*N commitments, that means they should lie on a polynomial
    of degree d = K - N - 1, where K = next_power_of_two(2*N)
    (The remaining positions are filled with 0, this is to make FFTs usable)

    For details see here: https://notes.ethereum.org/@dankrad/barycentric_low_degree_check
    """
    assert len(commitments) % 2 == 0
    N = len(commitments) // 2
    r = hash_to_bls_field(commitments, 0)
    K = next_power_of_two(2 * N)
    d = K - N - 1
    r_to_K = pow(r, N, K)
    roots = list_to_reverse_bit_order(roots_of_unity(K))

    # For an efficient implementation, B and Bprime should be precomputed
    def B(z):
        r = 1
        for w in roots[:d + 1]:
            r = r * (z - w) % BLS_MODULUS
        return r

    def Bprime(z):
        r = 0
        for i in range(d + 1):
            m = 1
            for w in roots[:i] + roots[i + 1:d + 1]:
                m = m * (z - w) % BLS_MODULUS
            r = (r + m) % BLS_MODULUS
        return r

    coefs = []
    for i in range(K):
        coefs.append( - (r_to_K - 1) * bls_modular_inverse(K * roots[i * (K - 1) % K] * (r - roots[i])) % BLS_MODULUS)
    for i in range(d + 1):
        coefs[i] = (coefs[i] + B(r) * bls_modular_inverse(Bprime(r) * (r - roots[i]))) % BLS_MODULUS

    assert elliptic_curve_lincomb(commitments, coefs) == bls.inf_G1()

vector_lincomb

1
2
3
4
5
6
7
8
9
def vector_lincomb(vectors: List[List[BLSFieldElement]], scalars: List[BLSFieldElement]) -> List[BLSFieldElement]:
    """
    Compute a linear combination of field element vectors.
    """
    r = [0]*len(vectors[0])
    for v, a in zip(vectors, scalars):
        for i, x in enumerate(v):
            r[i] = (r[i] + a * x) % BLS_MODULUS
    return [BLSFieldElement(x) for x in r]

bytes_to_field_elements

1
2
3
4
5
6
def bytes_to_field_elements(block: bytes) -> List[BLSFieldElement]:
    """
    Slices a block into 31-byte chunks that can fit into field elements.
    """
    sliced_block = [block[i:i + 31] for i in range(0, len(bytes), 31)]
    return [BLSFieldElement(int.from_bytes(x, "little")) for x in sliced_block]

Polynomial operations

add_polynomials

1
2
3
4
5
6
def add_polynomials(a: BLSPolynomialByCoefficients, b: BLSPolynomialByCoefficients) -> BLSPolynomialByCoefficients:
    """
    Sum the polynomials ``a`` and ``b`` given by their coefficients.
    """
    a, b = (a, b) if len(a) >= len(b) else (b, a)
    return [(a[i] + (b[i] if i < len(b) else 0)) % BLS_MODULUS for i in range(len(a))]

multiply_polynomials

1
2
3
4
5
6
7
8
9
def multiply_polynomials(a: BLSPolynomialByCoefficients, b: BLSPolynomialByCoefficients) -> BLSPolynomialByCoefficients:
    """
    Multiplies the polynomials `a` and `b` given by their coefficients
    """
    r = [0]
    for power, coef in enumerate(a):
        summand = [0] * power + [coef * x % BLS_MODULUS for x in b]
        r = add_polynomials(r, summand)
    return r

interpolate_polynomial

def interpolate_polynomial(xs: List[BLSFieldElement], ys: List[BLSFieldElement]) -> BLSPolynomialByCoefficients:
    """
    Lagrange interpolation
    """
    assert len(xs) == len(ys)
    r = [0]

    for i in range(len(xs)):
        summand = [ys[i]]
        for j in range(len(ys)):
            if j != i:
                weight_adjustment = bls_modular_inverse(xs[j] - xs[i])
                summand = multiply_polynomials(
                    summand, [weight_adjustment, ((BLS_MODULUS - weight_adjustment) * xs[i])]
                )
        r = add_polynomials(r, summand)

    return r

evaluate_polynomial_in_evaluation_form

def evaluate_polynomial_in_evaluation_form(poly: BLSPolynomialByEvaluations, x: BLSFieldElement) -> BLSFieldElement:
    """
    Evaluates a polynomial (in evaluation form) at an arbitrary point
    """
    field_elements_per_blob = SAMPLES_PER_BLOB * FIELD_ELEMENTS_PER_SAMPLE
    roots = roots_of_unity(field_elements_per_blob)

    def A(z):
        r = 1
        for w in roots:
            r = r * (z - w) % BLS_MODULUS
        return r

    def Aprime(z):
        return field_elements_per_blob * pow(z, field_elements_per_blob - 1, BLS_MODULUS) 

    r = 0
    inverses = [bls_modular_inverse(z - x) for z in roots]
    for i, x in enumerate(inverses):
        r += poly[i] * bls_modular_inverse(Aprime(roots[i])) * x % BLS_MODULUS
    r = r * A(x) % BLS_MODULUS
    return r

KZG Operations

We are using the KZG10 polynomial commitment scheme (Kate, Zaverucha and Goldberg, 2010: https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf).

Elliptic curve helper functions

elliptic_curve_lincomb

1
2
3
4
5
6
7
8
9
def elliptic_curve_lincomb(points: List[KZGCommitment], scalars: List[BLSFieldElement]) -> KZGCommitment:
    """
    BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
    This is a non-optimized implementation.
    """
    r = bls.inf_G1()
    for x, a in zip(points, scalars):
        r = r.add(x.mult(a))
    return r

Hash to field

hash_to_bls_field

1
2
3
4
5
6
7
8
def hash_to_bls_field(x: Container, challenge_number: uint64) -> BLSFieldElement:
    """
    This function is used to generate Fiat-Shamir challenges. The output is not uniform over the BLS field.
    """
    return (
        (int.from_bytes(hash(hash_tree_root(x) + int.to_bytes(challenge_number, 32, "little")), "little"))
        % BLS_MODULUS
    )

KZG operations

verify_kzg_proof

def verify_kzg_proof(commitment: KZGCommitment, x: BLSFieldElement, y: BLSFieldElement, proof: KZGCommitment) -> None:
    """
    Check that `proof` is a valid KZG proof for the polynomial committed to by `commitment` evaluated
    at `x` equals `y`.
    """
    zero_poly = G2_SETUP[1].add(G2_SETUP[0].mult(x).neg())

    assert (
        bls.Pairing(proof, zero_poly)
        == bls.Pairing(commitment.add(G1_SETUP[0].mult(y).neg), G2_SETUP[0])
    )

verify_kzg_multiproof

def verify_kzg_multiproof(commitment: KZGCommitment,
                          xs: List[BLSFieldElement],
                          ys: List[BLSFieldElement],
                          proof: KZGCommitment) -> None:
    """
    Verify a KZG multiproof.
    """
    zero_poly = elliptic_curve_lincomb(G2_SETUP[:len(xs)], interpolate_polynomial(xs, [0] * len(ys)))
    interpolated_poly = elliptic_curve_lincomb(G2_SETUP[:len(xs)], interpolate_polynomial(xs, ys))

    assert (
        bls.Pairing(proof, zero_poly)
        == bls.Pairing(commitment.add(interpolated_poly.neg()), G2_SETUP[0])
    )

verify_degree_proof

1
2
3
4
5
6
7
8
9
def verify_degree_proof(commitment: KZGCommitment, degree_bound: uint64, proof: KZGCommitment):
    """
    Verifies that the commitment is of polynomial degree < degree_bound. 
    """

    assert (
        bls.Pairing(proof, G2_SETUP[0])
        == bls.Pairing(commitment, G2_SETUP[-degree_bound])
    )